

Auswahlwettbewerb zur IMO 2005

Lösungen zur 2. Auswahlklausur

Aufgabe 1

Eine unendliche Folge a_0, a_1, a_2, \ldots reeller Zahlen erfüllt die Bedingung $a_n = \left| a_{n+1} - a_{n+2} \right|$ für alle $n \geq 0$, wobei a_0 und a_1 verschiedene positive Zahlen sind. Kann diese Folge beschränkt sein? Die Antwort ist zu begründen.

Lösung

Zunächst beweisen wir, dass zwei aufeinander folgende Glieder niemals gleich sein können. Aus $a_n=a_{n+1}=c$ folgte nämlich sofort $a_{n-1}=0$ und $a_{n-2}=a_{n-3}=c$ (n>2). Schließlich müsste $a_0=a_1$ oder $a_0=0$ bzw. $a_1=0$ sein, was ausgeschlossen ist. Daher gilt auch $a_n>0$ für alle n.

Auflösen der Bedingung liefert $a_{n+2}=a_{n+1}+a_n$ falls $a_{n+2}>a_{n+1}$ ist, sowie $a_{n+2}=a_{n+1}-a_n$ falls $a_{n+2}< a_{n+1}$ ist. Aus $a_{n+1}< a_n$ folgt also $a_{n+2}>a_n$ und $a_{n+2}>a_{n+1}$. Daher ist diejenige Teilfolge $b_0,b_1,b_2,...$ streng monoton wachsend, die durch Weglassen aller Glieder entsteht, die kleiner als ihr Vorgänger und ihr Nachfolger sind. Wenn wir nun zeigen, dass $b_{m+1}-b_m\geq b_m-b_{m-1}$ für alle $m\geq 2$ gilt, so haben wir für diese Teilfolge eine arithmetische Folge mit positiver Differenz als Minorante, woraus die Unbeschränktheit direkt folgt. Dazu setzen wir $b_{m+1}=a_{n+2}$, wobei $a_{n+2}>a_{n+1}$ gelten soll. Für $a_{n+1}>a_n$ haben wir $b_m=a_{n+1}$ und $b_{m-1}\geq a_{n-1}$ (weil entweder $b_{m-1}=a_{n-1}$ oder $b_{m-1}=a_n>a_{n-1}$ gilt). So ist $b_{m+1}-b_m=a_n=a_{n+1}-a_{n-1}\geq b_m-b_{m-1}$. Für $a_{n+1}< a_n$ haben wir dagegen $b_m=a_n$ und $b_{m-1}\geq a_{n-1}$ (weil entweder $b_{m-1}=a_{n-2}>a_{n-1}$ gilt). So ist hier $b_{m+1}-b_m=a_{n+1}=a_n-a_{n-1}\geq b_m-b_{m-1}$.

Aufgabe 2

Gegeben seien ein Kreis K und eine Gerade g_i die keinen gemeinsamen Punkt haben.

Ferner sei \overline{AB} der Durchmesser von K, der orthogonal zu g ist, wobei B näher an g liegt als A. Weiter sei ein beliebiger Punkt C, verschieden von A und B, auf K gegeben. Die Gerade AC schneidet g in D; die Gerade DE berührt K in E, wobei B und E auf derselben Seite von AC liegen. Schließlich schneidet BE die Gerade g im Punkt E und E und

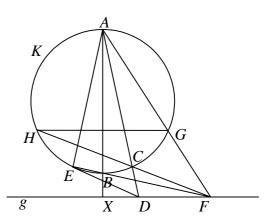
Man beweise, dass der Spiegelpunkt von G bezüglich der Achse AB auf der Geraden CF liegt.

Lösung

Wir bezeichnen den zweiten Schnittpunkt von CF und K mit H sowie den Schnittpunkt von AB und g mit X. Wegen $AB \perp g$ reicht es zu zeigen, dass $GH \parallel g$. Dies ist genau dann der Fall, wenn $\angle AGH = \angle AFD$. Umfangswinkelsatz und Scheitelwinkel liefern $\angle AGH = \angle ACH = \angle DCF$; also muss $\angle DCF = \angle AFD$ gezeigt werden. Da die Dreiecke DFC und ADF bei D einen Winkel gemeinsam haben, braucht nur deren (gegensinnige)

Ähnlichkeit nachgewiesen zu werden. Diese ist genau dann erfüllt, wenn $\frac{|DC|}{|DF|} = \frac{|DF|}{|DA|}$,

d.h. $\left|DF\right|^2 = \left|DA\right| \cdot \left|DC\right|$ gilt. Nach dem Tangenten-Sekantensatz gilt allerdings $\left|DE\right|^2 = \left|DA\right| \cdot \left|DC\right|$, so dass nur $\left|DE\right| = \left|DF\right|$ zu zeigen bleibt, was mit $\angle DEF = \angle EFD$ gleichbedeutend ist. Wegen $\angle FXB = \angle AEB = 90^\circ$ ist AEXF ein Sehnenviereck und es gilt $\angle EFX = \angle EAB$. Die Gleichheit der Sehnen-Tangentenwinkel liefert $\angle DEF = \angle EAB$, woraus $\angle DEF = \angle EFD$ folgt.



Aufgabe 3

Gegeben seien zwei positive ganze Zahlen n und k. In der Ebene liegen n Kreise ($n \ge 2$), so dass jeder Kreis jeden anderen zweimal schneidet und alle diese Schnittpunkte paarweise verschieden sind.

Jeder Schnittpunkt wird mit einer von n Farben so gefärbt, dass jede Farbe wenigstens einmal verwendet wird und auf jedem der Kreise die gleiche Anzahl k von Farben vertreten ist.

Man bestimme alle Werte von n und k, für die eine solche Färbung möglich ist.

Lösung

Die Antwort lautet: $2 \le k \le n \le 3$ oder $3 \le k \le n$.

Offensichtlich gilt $k \le n$ nach Aufgabenstellung sowie $k \ge 2$, weil für k=1 alle Punkte dieselbe Farbe hätten, während die Anzahl n der Farben ≥ 2 sein soll. Wir nummerieren die Kreise und die Farben von 1 bis n und bezeichnen mit F(i,j) die Menge der Farben der Schnittpunkte der Kreise i und j. F(i,j) enthält ein oder zwei Elemente.

Sei k=2. Für n=2 ist $F(1,2)=\{1,2\}$ eine erlaubte Färbung. Für n=3 ist $F(1,2)=\{3\}$, $F(2,3)=\{1\}$, $F(3,1)=\{2\}$ ein Beispiel für eine erlaubte Färbung. Sei nun $n\geq 4$. Jedem der n Kreise ordnen wir die Menge $\{i,j\}$ der beiden auf ihm vorkommenden Farben zu. Jede dieser Mengen besteht aus zwei Elementen und jede der n Farben muss in wenigstens zwei Mengen vorkommen, da sich in jedem gefärbten Punkt zwei Kreise schneiden. Also kommt jede Farbe in genau zwei Mengen vor. Zum Kreis 1 mit der Menge $\{i,j\}$ gibt es daher noch höchstens zwei weitere Kreise, in deren Farbmengen i oder j vorkommen. Wegen $n\geq 4$ finden wir stets einen Kreis 2 mit der Menge $\{k,l\}$ und $\{k,l\}\cap\{i,j\}=\{\}$. Die Schnittpunkte der Kreise 1 und 2 sind dann nicht erlaubt färbbar – Widerspruch!

Nun beweisen wir mit vollständiger Induktion einen etwas stärkeren Satz als verlangt: Für $n \ge k \ge 3$ existiert stets eine erlaubte Färbung, bei der auf dem Kreis i die Farbe i für alle $i=1,\dots,n$ vorkommt. Zur Verankerung geben wir für k=n=3 mit $F(1,2)=\{1,2\}$, $F(1,3)=\{1,3\}$, $F(2,3)=\{2,3\}$ ein Beispiel und für k=3, n>3 folgendes Beispiel für eine erlaubte Färbung mit Zusatzbedingung:

 $F(1,2) = \{1,2\} \;,\;\; F(i,i+1) = \{i\} \;\; \text{für} \;\; 1 < i < n-1 \;,\;\; F(n-1,n) = \{n-2,n-1\} \;\; \text{und} \;\; F(i,j) = \{n\} \;\; \text{für die restlichen Paare} \;\; (i,j) \;\; \text{mit} \;\; 1 \leq i < j \leq n \;.$

Nun nehmen wir an, dass der stärkere Satz für ein $k \geq 3$ erfüllt ist, und wählen $n \geq k+1$. Wegen $n-1 \geq k \geq 3$ gibt es eine erlaubte Färbung mit Zusatzbedingung für die Kreise bzw. Farben 1,2,...,n-1. Jetzt färben wir die Schnittpunkte des Kreises n: Für jedes i=1,...,n-1 erhält ein Schnittpunkt der Kreise i und n die Farbe n. Damit kommen auf jedem der Kreise i mit i=1,...,n-1 genau k+1 Farben vor; darunter i und n. Für i=1,...,k erhält der zweite Schnittpunkt der Kreise i und n die Farbe i, so dass nun auch auf dem Kreis n genau n0 genau n1. Für n2 genau n3 genau n4 Farben liegen, nämlich 1 bis n5 und n6. Alle übrigen neuen Schnittpunkte erhalten die Farbe n6, so dass auf keinem Kreis weitere Farben dazukommen. Diese Färbung erfüllt alle Bedingungen.