

Die Aufgaben der 2. Runde 2014

Aufgabe 1

Zeige, dass für alle positiven ganzen Zahlen n die Zahl $2^{(3^n)} + 1$ durch 3^{n+1} teilbar ist.

Aufgabe 2

Für alle positiven ganzen Zahlen m und k mit $m \ge k$ sei $a_{m,k} = {m \choose k-1} - 3^{m-k}$.

Bestimme alle Folgen reeller Zahlen (x_1 , x_2 , x_3 , ...), die für alle positiven ganzen Zahlen n die Gleichung $a_{n,1} \cdot x_1 + a_{n,2} \cdot x_2 + ... + a_{n,n} \cdot x_n = 0$ erfüllen.

Anmerkung: $\binom{m}{k-1}$ bezeichne wie üblich einen Binomialkoeffizienten.

Aufgabe 3

In einer Ebene liegt eine Gerade g; auf ihr werden n paarweise verschiedene Punkte beliebig gewählt ($n \ge 2$); über den Verbindungsstrecken je zweier dieser Punkte werden Halbkreise gezeichnet, die alle auf derselben Seite von g liegen.

Bestimme in Abhängigkeit von n die maximale Anzahl von nicht auf g liegenden Schnittpunkten solcher Halbkreise.

Aufgabe 4

In der Ebene sind drei nicht auf einer Geraden liegende Punkte A₁, A₂ und A₃ gegeben; für n = 4, 5, 6,... sei A_n der Schwerpunkt des Dreiecks A_{n-3}A_{n-2}A_{n-1}.

- a) Zeige, dass es genau einen Punkt S gibt, der für alle $n \ge 4$ im Inneren des Dreiecks $A_{n-3}A_{n-2}A_{n-1}$ liegt.
- b) Es sei T der Schnittpunkt der Geraden SA3 mit der Geraden A1A2. Bestimme die beiden Streckenverhältnisse A1T: TA2 und TS: SA3.

