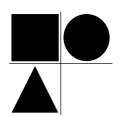
Bundeswettbewerb Mathematik

Wissenschaftszentrum • Postfach 20 14 48 • 53144 Bonn Fon: 0228 - 3727 411 • Fax: 0228 - 3727 413 e-mail: info@bundeswettbewerb-mathematik.de www.bundeswettbewerb-mathematik.de

Korrekturkommission • Karl Fegert



Aufgaben und Lösungen

2. Runde 2004

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns!

Anschrift oder Email-Adresse s.o.

Stand: Oktober 2004

Aufgabe 1: Es sei k eine positive ganze Zahl. Eine natürliche Zahl heiße k-typisch, wenn jeder ihrer Teiler bei Division durch k den Rest 1 lässt.

Man beweise:

- a) Wenn die Anzahl der Teiler einer positiven ganzen Zahl n (einschließlich 1 und n) k-typisch ist, dann ist n die k-te Potenz einer ganzen Zahl.
- b) Die Umkehrung der Aussage a) ist falsch, wenn k größer als 2 ist.

Beweis zu a): Die betrachtete positive ganze Zahl n habe die Primfaktorzerlegung (im Weiteren mit PFZ bezeichnet) $n = \prod p_i^{a_i}$; die Anzahl der Teiler von n sei mit d(n) bezeichnet.

Jeder Teiler von n lässt sich wegen der Eindeutigkeit der PFZ in genau einer Art als Teilprodukt dieser PFZ darstellen, d.h. die Menge der Teiler von n besteht aus genau den Zahlen der Form $t = \prod p_i^{t_i}$ mit $t_i \in \{0, 1, ..., a_i\}$. Mit einfacher Kombinatorik leitet man ab, dass $d(n) = \prod (a_i + 1)$. Hieraus erkennt man u.a. sofort, dass insbesondere jedes der $(a_i + 1)$ ein Teiler von d(n) ist.

Falls d(n) nun k-typisch ist, lässt jeder Teiler von d(n) bei Division durch k den Rest 1. Dies gilt insbesondere für jedes der (a_i+1) , also lässt jedes der a_i den Rest 0; damit ist jedes der a_i ein nicht-negatives Vielfaches von k. Es gibt also nicht-negative ganze Zahlen b_i , sodass $n = \prod p_i^{a_i} = \sum_{i=1}^{n} p_i^{a_i}$

$$\prod p_i^{kb_i} = \left(\prod p_i^{b_i}\right)^k$$
. Also ist *n* die *k*-te Potenz der ganzen Zahl $\prod p_i^{b_i}$.

Beweis zu b): Zum Nachweis genügt es, zu jedem k > 2 eine Zahl n anzugeben, die k-te Potenz einer ganzen Zahl ist und deren Anzahl von Teilern nicht k-typisch ist; d.h. mindestens einen Teiler besitzt, der bei Division durch k einen Rest verschieden von 1 lässt.

Ein mögliches Beispiel ist die ganze Zahl $n := 5^{k(k-2)} = (5^{(k-2)})^k$. Es ist dann n die k-te Potenz der Zahl $5^{(k-2)}$; diese ist wegen k > 2 ganz. Da 5 eine Primzahl ist, ist $5^{k(k-2)}$ die Primfaktorzerlegung von n, also ist $d(n) = k(k-2)+1 = k^2-2k+1 = (k-1)^2$. Damit hat d(n) den Teiler (k-1); dieser lässt bei Division durch k den Rest k-1, dieser Rest ist wegen k>2 verschieden von 1.

Bemerkungen: In der PFZ von n = 1 haben alle a_i den Wert 0. Die Zahl n = 1 ist also in der Argumentation zu Teilaufgabe a) enthalten.

In der Argumentation zu b) kann die Zahl 5 durch jede andere Primzahl ersetzt werden.

Eine Zahl der Form $n=p^{ak}$ kann dann als Gegenbeispiel für den Beweis zu b) verwendet werden, wenn ak+1 für alle k>2 einen Teiler hat, der bei Division durch k einen Rest verschieden von 1 lässt. Für alle k>2 ist k-1 ein solcher Teiler. Da (ak+1):(k-1)=(ak-a+a+1):(k-1)=a+(a+1):(k-1), ist für die Existenz eines solchen Teilers hinreichend, dass a die Bedingung a+1=m(k-1) mit ganzzahligem m erfüllt, z.B. $a\in\{(k-2),(2k-3),(3k-4),\dots\}$.

Für k=2 ist die Umkehrung der Aussage a) richtig: Sei n die k-te Potenz einer ganzen Zahl, also eine Quadratzahl. Dann ist \sqrt{n} ganzzahlig und einziger Teiler von n, der identisch mit seinem Komplementärteiler ist. Also ist d(n) ungerade und damit auch alle Teiler von d(n); diese lassen also bei Division durch k=2 den Rest 1.

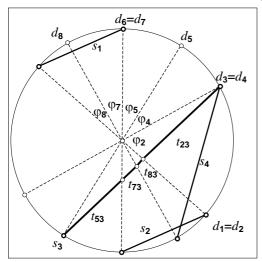
Aufgabe 2: Es sei *k* eine positive ganze Zahl. In einem Kreis mit Radius 1 seien endlich viele Sehnen gezogen. Jeder Durchmesser habe mit höchstens *k* dieser Sehnen gemeinsame Punkte.

Man beweise, dass die Summe der Längen aller dieser Sehnen kleiner als $k \cdot \pi$ ist.

Vorbemerkung: Die Aussage bleibt gültig, wenn man sich auf innere Punkte der Sehnen beschränkt.

Gemeinsame Bezeichnungen: Die Gesamtzahl der Sehnen sei mit n bezeichnet; die Sehnen selbst in beliebiger Reihenfolge mit $s_1, s_2, ..., s_n$. Winkel seien im Bogenmaß angegeben. Da der Kreis den Radius 1 hat, kann man den Mittelpunktswinkel und die Länge des zugehörigen Bogens identifizieren. Gelegentlich identifizieren wir auch die Bezeichnung eines Objektes wie Bögen, Strecken oder Winkel mit deren Länge bzw. Weite.

1. Beweis: Wir zeichnen durch den Anfangs- und den Endpunkt jeder Sehne je einen Durchmesser;



einen beliebigen davon bezeichnen wir mit d_1 , die restlichen so mit d_2 , d_3 ,..., d_{2n} , dass d_1 bei einer Drehung gegen den Uhrzeigersinn der Reihe nach d_2 , ..., d_{2n} überstreicht. Den Winkel zwischen d_i und d_{i+1} bezeichnen wir mit ϕ_i . (Evtl. sind manche der d_i identisch mit d_{i+1} , dann ist $\phi_i = 0$. I.A. ist von den beiden Endpunkten eines solchen Durchmessers nur einer auch Endpunkt einer Sehne. Wie bei solchen Aufgaben üblich, werde 2n+1 mit 1 identifiziert.)

Da d_1 nach einer Halbdrehung die Kreisfläche vollständig überstrichen hat, hat er auch sämtliche betrachteten Durchmesser d_i (i=2, 3, ..., 2n) überstrichen. Da er nach der Halbdrehung zusätzlich seine ursprünglichen Lage

einnimmt, ist $\sum_{i=1}^{2n} \varphi_i = \pi$.

Die Paare von Durchmessern mit aufeinander folgenden Indices zerlegen den Kreis in Doppelsektoren $(d_i|d_{i+1})$ (i=1, 2,..., 2n). Sehnen, die keine Durchmesser sind, werden durch diese Doppelsektoren in Teilabschnitte zerlegt. Die Länge des durch den Sektor $(d_i|d_{i+1})$ auf der Sehne s_m bestimmten Teilabschnitts sei mit t_{im} bezeichnet; wenn dieser Sektor mit s_m keine Punkte oder höchstens Randpunkte der

Sehne gemeinsam hat, sei $t_{im} = 0$. Es ist also $s_m = \sum_{i=1}^{2n} t_{im}$.

Wir werden die Länge der Sehne s_m über den zugehörigen Mittelpunktswinkel abschätzen, deswegen setzen wir $\varphi_{im} = \varphi_i$, falls der Sektor $(d_i|d_{i+1})$ innere Punkte der Sehne enthält, und $\varphi_{im} = 0$, falls der Sektor $(d_i|d_{i+1})$ keine oder nur Randpunkte der Sehne enthält. Damit hat der zur Sehne s_m gehörende

Mittelpunktswinkel die Weite $\sum_{i=1}^{2n} \varphi_{im}$. Da jeder Bogen länger als die zugehörige Sehne ist, gilt

$$s_m = \sum_{i=1}^{2n} t_{im} < \sum_{i=1}^{2n} \varphi_{im}$$
 (A).

Für Sehnen s_m , die Durchmesser sind, gibt es diese Teilabschnitte in analoger Weise: Es gibt zwei Teilabschnitte vom Kreisrand zum Mittelpunkt, deren Länge jeweils 1 ist (diese sind aber nicht so einfach durch die Indices zu definieren wie oben) und i.A. mehrere Teilabschnitte der Länge 0 im Mittelpunkt der Sehne, evtl. Teilabschnitte der Länge 0 am Rand der Sehne. Wir können also zwei verschiedene Indices p und q wählen, so dass $t_{pm} = t_{qm} = 1$ und $t_{im} = 0$ für alle anderen Indices. Zur Abschätzung bei der Addition setzen wir wie oben $\phi_{im} = \phi_i$ für alle i = 1, 2, ..., 2n (die Sehne s_m hat im betrachteten Fall mit jedem Durchmesser gemeinsame Punkte!); die Gleichung (A) gilt dann wegen

$$s_m = \sum_{i=1}^{2n} t_{im} = 2 < \pi = \sum_{i=1}^{2n} \varphi_{im}$$
 entsprechend.

Nach Voraussetzung hat jeder Durchmesser (hier werden alle Durchmesser, nicht nur die d_i betrachtet!) mit höchstens k Sehnen gemeinsame Punkte. Da nach Konstruktion alle Durchmesser, die durch das Innere eines Sektors gehen, mit den gleichen Sehnen gemeinsame Punkte haben, gibt es für je-

des i höchstens k verschiedene Werte $m \in \{1, 2, ..., n\}$, für die $\varphi_{im} > 0$; damit ist $\sum_{m=1}^{n} \varphi_{im} \leq k \varphi_i$ für alle i.

Zusammen mit einer Umstellung der Summanden ergibt sich die verlangte Ungleichung

$$\sum_{m=1}^{n} s_m = \sum_{m=1}^{n} \sum_{i=1}^{2n} t_{im} < \sum_{m=1}^{n} \sum_{i=1}^{2n} \varphi_{im} = \sum_{i=1}^{2n} \sum_{m=1}^{n} \varphi_{im} \le \sum_{i=1}^{2n} k \varphi_i = k\pi.$$

2. Beweis (eigentlich nur eine Umformulierung des 1. Beweises): Jede Sehne s_i bestimmt durch ihre Endpunkte auf der Kreislinie zwei Bögen, von denen einer nicht länger als der halbe Kreisumfang ist. Wir spiegeln diesen Bogen (bzw. bei gleichlangen einen beliebigen der beiden) am Kreismittelpunkt und nennen jeden dieser – übrigens bis auf evtl. Randpunkte disjunkten – Bögen Sehnenbogen zur Sehne s_i . Offensichtlich hat ein Durchmesser genau dann mit einer Sehne einen Punkt gemeinsam, wenn er mit den zugehörigen Sehnenbögen gemeinsame Punkte hat.

Anstatt der Gesamtlänge aller Sehnen betrachten wir die Gesamtlänge aller Sehnenbögen; da jede Sehne kürzer ist als jeder der beiden zugehörigen Sehnenbögen, genügt es zu zeigen, dass die Gesamtlänge aller Sehnenbögen nicht größer als $2k\pi$ ist.

Zu jeder Sehne markieren wir alle Punkte auf den beiden zugehörigen Sehnenbögen mit einer Farbe, wobei wir für verschiedene Sehnen verschiedene Farben verwenden. Im Allgemeinen werden viele Punkte mehrere Farbmarkierungen haben; es gibt aber keinen Punkt, der mehr als k Farbmarkierungen hat, weil andernfalls – im Widerspruch zur Voraussetzung – der Durchmesser durch einen solchen Punkt mit mehr als k Sehnen gemeinsame Punkte hätte.

Da wir nur endlich viele Sehnen haben, unterteilen ihre Endpunkte die Kreislinie und damit auch jeden Sehnenbogen in endlich viele Abschnitte, die ihrerseits im Innern keine Endpunkte von Sehnen enthalten; diese Abschnitte nennen wir Elementarbögen. Im Innern jedes Elementarbogens ist jeder Punkt mit der gleichen Farbkombination markiert. Da sich die Elementarbögen nicht überlappen, ist ihre Gesamtlänge nicht länger als der Kreisbogen, also nicht länger als 2π .

Die Länge jedes Sehnenbogens kann als Summe der Längen seiner Elementarbögen ausgedrückt werden. In der Summe der Längen aller Sehnenbögen taucht dann jeder Elementarbogen so oft auf, wie die Anzahl der Farbmarkierungen der Punkte im Innern angibt, also höchstens k mal. Damit ist die Gesamtlänge aller Sehnenbögen nicht größer als $k \cdot 2 \cdot \pi$.

Variante (abstrakte Formulierung des 2. Beweises): Mit d_{α} ($0 \le \alpha < \pi$) sei derjenige Durchmesser bezeichnet, der mit einem beliebig ausgewählten Durchmesser den positiv orientierten Winkel α einschließt. Ferner definieren wir $f_i(\alpha)$ als Funktion, die die Werte 1 bzw. 0 annimmt, je nachdem ob d_{α} mit der Sehne s_i gemeinsame Punkte hat oder nicht.

Da kein Durchmesser mit mehr als k Sehnen gemeinsame Punkte hat, ist $\sum_{i=1}^{n} f_i(\alpha) \le k$ f. alle $\alpha \in [0,\pi]$.

Durch die Endpunkte jeder Sehne s_i sind auf dem Kreis zwei Bögen definiert, von denen wir den kürzeren – bzw., falls s_i ein Durchmesser ist, einen beliebigen der beiden gleichlangen – mit b_i

bezeichnen. Mit Hilfe der Funktionen f_i können wir deren Länge ausdrücken durch $b_i = \int\limits_0^\pi f_i(\alpha) d\alpha$.

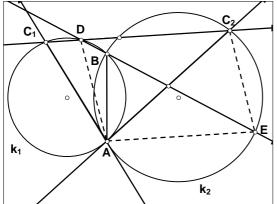
Da jede Sehne kürzer ist als der zugehörige Bogen b_i ist, können wir abschätzen und erhalten wie gewünscht

$$\sum_{i=1}^{n} s_{i} < \sum_{i=1}^{n} b_{i} = \sum_{i=1}^{n} \int_{0}^{\pi} f_{i}(\alpha) d\alpha = \int_{0}^{\pi} \sum_{i=1}^{n} f_{i}(\alpha) d\alpha \leq \int_{0}^{\pi} k d\alpha = k\pi.$$

Aufgabe 3: Gegeben seien zwei Kreise k₁ und k₂, die sich in den beiden verschiedenen Punkten A und B schneiden. Die Tangente an k2 im Punkt A schneide k1 außer in A in einem Punkt C1; entsprechend schneide die Tangente an k1 im Punkt A den Kreis k2 in einem weiteren Punkt C2. Die Gerade (C1C2) schließlich schneide k₁ in einem von C₁ und B verschiedenen Punkt D.

Man beweise, dass die Gerade (BD) die Sehne AC₂ halbiert.

1. Beweis (Umfangswinkelsatz, vgl. Figur): Die Gerade (DB) schneidet den Kreis k2 in einem Punkt, den wir E nennen. Es ist dann



 $\angle C_2ED$ $= \angle C_2EB$ (E liegt auf DB) $= \angle C_2AB$ (Umfangswinkel über Sehne C2B)

(Sehn.(AB!)-Tang.(AC₂!)-Winkel an k₁) = ∠ADB

= ∠ADE (E liegt auf der Geraden (DB));

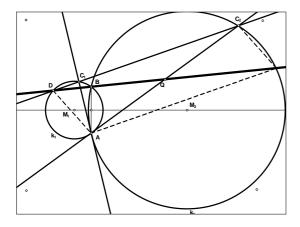
damit ist $C_2E \parallel AD$.

Mit den gleichen Argumenten schließen wir: $\angle DEA = \angle BEA = \angle BAC_1 = 180^{\circ} - \angle C_1DB = \angle BDC_2$ = $\angle EDC_2$. Damit ist AE || DC₂.

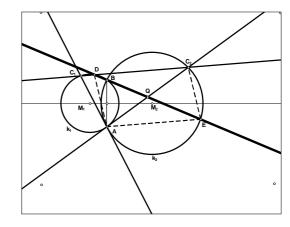
Also ist Viereck ADC₂E ein Parallelogramm; bekanntlich halbieren sich in jedem Parallelogramm die Diagonalen, insbesondere halbiert (DB) = (DE) die Strecke AC_2 .

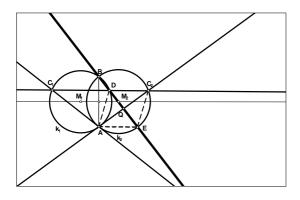
Diskussion der Lagebeziehungen: Falls E = B, d.h. DB Tangente an k_2 , so gilt die Argumentation wobei die ersten beiden Gleichheitszeichen zusammengefasst und entsprechend. Sehnen-Tangenten-Satz als Begründung genommen werden müssen. (Dieser Fall kommt allerdings nie vor.)

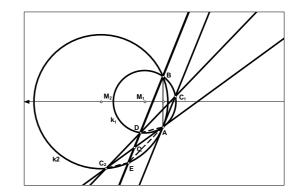
Die Argumentation kann bei anderen als in der Skizze dargestellten Lagebeziehungen zwischen den Punkten A, B, C₁, C₂ und D übernommen werden, allerdings müssen dann manche Umfangswinkel durch ihre Nebenwinkel ersetzt werden. Die Gesamtheit aller möglichen relativen Lagen bei festem AB und festem k₁ erhält man z.B. dadurch, dass man M₂ auf der Mittelsenkrechten von AB bewegt. Dabei dreht sich die Tangente an k2 um den Punkt A und nimmt - mit Ausnahme von (AB) - jede mögliche Lage ein; entsprechend nimmt C₁ jede mögliche Lage auf k₁ mit Ausnahme des Punktes B ein. Damit hat man folgende vier Lagen: Wenn C1 in der gleichen Halbebene bez. AB wie M1 liegt, dann kann D auf einem der drei Bögen C1A (Fall 1), BC1 (Fall 2) oder AB (Fall 3) liegen; gemeint ist jeweils derjenige Bogen, der nicht den vierten Punkt enthält. Wenn C1 in derjenigen Halbebene bez. AB liegt, die M₁ nicht enthält, dann liegt D immer auf dem Bogen BA (Fall 4). Der letzte Fall beinhaltet auch den Fall, dass M₁ auf AB liegt.



Fall 1 Fall2



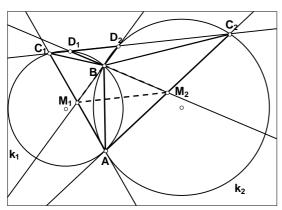




Fall 3

Fall 4

2. Beweis: (ähnliche Dreiecke, Strahlensatz) Die Aufgabenstellung ist symmetrisch in k_1 und k_2 ; d.h. es kann auch behauptet werden, dass die Gerade durch B und den zweiten Schnittpunkt von C_1C_2 mit k_2 die Strecke AC_1 halbiert.



Wir bezeichnen den zweiten Schnittpunkt von C_1C_2 mit k_2 mit D_2 , ferner benennen wir den Punkt D in D_1 um. Schließlich seien der Schnittpunkt von D_1B mit AC_2 mit M_2 , der Schnittpunkt von D_2B mit AC_1 mit M_1 bezeichnet.

Zunächst zeigen wir die Ähnlichkeit der Dreiecke $\Delta D_1 D_2 B$, $\Delta C_2 A B$ und $\Delta A C_1 B$. Es ist nämlich:

 $\angle D_1D_2B = \angle C_2AB$ (Innen- und Außenwinkel an gegenüberliegenden Ecken im Sehnenviereck ABD_2C_2) und $\angle C_2AB = \angle AC_1B$ (Tangenten- bzw. Sehnenwinkel an der Sehne AB im Kreis k₁); analog ist (man vertausche die Indices 1 und 2 und kehre den Drehsinn um)

 $\angle BD_1D_2 = \angle BAC_1 = \angle BC_2A$; die Dreiecke stimmen also in zwei Winkeln überein.

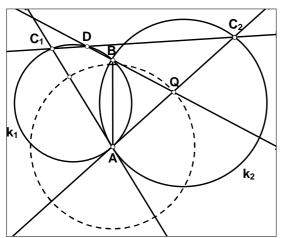
Nach dem bisher Gesagten ist insbesondere $\angle D_2BD_1 = \angle ABC_2 = \angle C_1BA$. Nun ist aber auch $\angle M_1BM_2 = \angle D_2BD_1$ (Scheitelwinkel); damit gilt $\angle C_1BA = \angle M_1BM_2 = \angle ABC_2$; d.h. $\angle C_1BM_1 + \angle M_1BA = \angle M_1BA + \angle ABM_2$. Hieraus folgt sofort $\angle C_1BM_1 = \angle ABM_2$; Damit sind nicht nur die Dreiecke ΔC_1BA und ΔABC_2 ähnlich, sondern auch ΔC_1BM_1 und ΔABM_2 ; d.h. auch die aus den je vier Punkten bestehenden Figuren C_1BAM_1 und ABC_2M_2 sind ähnlich. Damit erhalten wir die Verhältnisgleichungen $\overline{BM_1}:\overline{BM_2}=\overline{C_1B}:\overline{AB}$ (*) und $\overline{C_2M_2}:\overline{C_2A}=\overline{AM_1}:\overline{AC_1}$. (**).

Aus der Gleichung (*) folgt zusammen mit dem gleichen Winkel bei B, dass die Dreiecke ΔC_1BA und ΔM_1BM_2 ebenfalls ähnlich sind; damit gilt $\overline{BD_1}:\overline{BD_2}=\overline{BM_1}:\overline{BM_2}=\overline{BC_1}:\overline{BA}=\overline{BA}:\overline{BA}:\overline{BC_2}$. Aus dem ersten Gleichheitszeichen folgt mit Strahlensatz (Zentrum B), dass $D_1D_2\parallel M_2M_1$, also $C_1C_2\parallel M_2M_1$. Hieraus folgt mit dem Strahlensatz (Zentrum A) $\overline{AM_1}:\overline{AC_1}=\overline{AM_2}:\overline{AC_2}$ (***).

Schließlich setzen wir (**) und (***) zusammen und erhalten $\overline{C_2M_2}:\overline{C_2A}=\overline{AM_2}:\overline{AC_2}$; also wie gewünscht $\overline{C_2M_2}=\overline{AM_2}$.

Die Argumentation kann wie im 1. Beweis bei anderen Lagebeziehungen zwischen den Punkten A, B, C_1 , C_2 und D übernommen werden, allerdings müssen dann manche Umfangswinkel durch ihre Nebenwinkel, manche Summen durch Differenzen ersetzt werden.

- **3. Beweis** (Inversion am Kreis): Folgende Eigenschaften der Kreisspiegelung an einem Kreis um A mit Radius *r* werden als bekannt vorausgesetzt:
- (1) Das Bild eines Punktes Q ist derjenige Punkt Q' auf der Halbgeraden (AQ, für den $\overline{AQ} \cdot \overline{AQ'} = r^2$.
- (2) Jede Gerade durch den Mittelpunkt A des Inversionskreises ist Fixgerade.
- (3) Das Bild einer Geraden, die nicht durch A geht, ist ein Kreis, der A enthält.
- (4) Das Bild eines Kreises durch A ist eine Gerade.

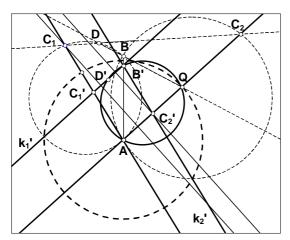


Wir bezeichnen den Mittelpunkt der Strecke AC_2 mit Q und invertieren die Gesamtfigur am Kreis um A mit Radius \overline{AQ} . Das Bild eines Objektes \mathbf{X} bei dieser Abbildung sei mit \mathbf{X}' bezeichnet.

Die Kreise k_1 und k_2 werden nach (3) in Geraden durch A überführt. Die Tangenten an k_1 und k_2 im Punkt A werden als Geraden durch A nach (2) in sich selbst überführt; da sie mit k_1 bzw. k_2 keine weiteren Schnittpunkte außer A besitzen, sind die Bilder der Kreise parallel zur jeweiligen Tangenten. Da B und C_2 verschiedene Punkte auf k_2 sind, ist also $B'C_2' \parallel AC_1'$ und analog $B'C_1' \parallel AC_2'$; damit ist das Viereck $AC_1'B'C_2'$ ein Parallelogramm. Da $D \in k_1$, ist $D' \in (k_1)' = (C_1'B')$. Schließlich ist $\overline{AC_2} = 2\,\overline{AQ}$; nach (1) wird also C_2 in

denjenigen Punkt auf AC₂ überführt, der zwischen A und C₂ liegt und der AQ halbiert.

Wäre $A \in (C_1C_2)$, so wäre (C_1C_2) entweder Tangente an k_1 oder k_2 , also $A=C_1$ oder $A=C_2$ im Widerspruch zur Aufgabenstellung. Da zusätzlich $D \in (C_1C_2)$, ist das Bild der Geraden (C_1C_2) nach (3) ein Kreis, der die Punkte A, C_1 ', C_2 ' und D' enthält; in diesem Kreis sind AC_2 ' und C_1 'D' parallele Sehnen; ihre Mittelsenkrechten also identisch. Die Spiegelung an dieser Mittelsenkrechten bildet also C_1 ' auf D' und A auf C_2 ' ab.



Nun verknüpfen wir diese Spiegelung mit der Spiegelung an der Mittelsenkrechten der Strecke D'B'. Da C_1 ', D' und B' alle auf der Geraden (k_1) ' liegen, sind die beiden Mittelsenkrechten parallel, die Verknüpfung ist also eine Parallelverschiebung um den Vektor $\overline{C_1'B'}$.

Da zusätzlich $AC_1'B'C_2'$ ein Parallelogramm, also $\overline{C_1'B'} = \overline{AC_2'}$ ist, bildet diese Verknüpfung auch A auf C_2' ab. Da aber bereits die Spiegelung an der Mittelsenkrechten der Strecke $C_1'D'$ den Punkt A auf C_2' überführt, führt die Spiegelung an der anderen Mittelsenkrechten C_2' in sich selbst über, d.h. diese Mittelsenkrechte geht durch C_2' . Weil $\overline{AC_2'} = \frac{1}{2} \overline{AQ}$ und $AC_2' \parallel D'B'$, folgt hieraus, dass die

Mittelsenkrechte von AQ mit der Mittelsenkrechten von D'B' zusammenfällt.

Hieraus können wir wiederum schließen, dass es einen Kreis gibt, der außer den Punkten A, D' und B' auch den Punkt Q enthält. Das Urbild dieses Kreises – das ist die Gerade (DB) – enthält also auch das Urbild des Punktes Q; dies ist – da Q auf dem Inversionskreis liegt – der Punkt Q selbst.

Bemerkung: Dieser Beweis kommt ohne eine Betrachtung von Lagebeziehungen aus.

Aufgabe 4: Man beweise, dass es unendlich viele Paare (x,y) verschiedener positiver rationaler Zahlen gibt, für die sowohl $\sqrt{x^2+y^3}$ als auch $\sqrt{x^3+y^2}$ rational ist.

Gemeinsame Vorbemerkung: Ein Paar (x,y), das die geforderten Bedingungen der Aufgabe erfüllt, nennen wir *zulässig*. Ein Paar (u,v) und einen Punkt (u|v) im Achsenkreuz nennen wir *rational*, wenn beide Elemente bzw. beide Koordinaten rational sind.

1. Beweis (explizite Angabe einer Folge, nach Teilnehmer Daniel Gutekunst): Wir definieren die beiden Folgen (x_n) und (y_n) über

$$x_n := 2^4 \cdot n^4 (2^8 \cdot n^{10} - 1)$$
 und $y_n := 2^2 \cdot n^2 \cdot x_n$ mit $n = 1, 2, 3, ...$

Dann sind die x_n und y_n für alle n offensichtlich verschieden, rational (sogar ganzzahlig!) und positiv. Außerdem sind beide Folgen offensichtlich streng monoton steigend; damit erhält man $(x_n, y_n) \neq (x_m, y_m) \Leftrightarrow m \neq n$; d.h. die unendlich vielen Paare (x_n, y_n) sind alle verschieden.

Schließlich sind

$$x_n^2 + y_n^3 = x_n^2 + (2^2 \cdot n^2 \cdot x_n)^3 = x_n^2 \cdot (1 + (2^6 \cdot n^6 \cdot (2^4 \cdot n^4 \cdot (2^8 \cdot n^{10} - 1))))$$

$$= x_n^2 \cdot (1 + 2^{18} \cdot n^{20} - 2^{10} \cdot n^{10}) = x_n^2 \cdot (2^9 \cdot n^{10} - 1)^2 \text{ und}$$

$$x_n^3 + y_n^2 = x_n^3 + (2^2 \cdot n^2 \cdot x_n)^2 = x_n^2 \cdot (x_n + 2^4 n^4)$$

$$= x_n^2 \cdot (2^4 \cdot n^4 \cdot (2^8 \cdot n^{10} - 1) + 2^4 \cdot n^4) = x_n^2 \cdot (2^{12} \cdot n^{14}) = x_n^2 \cdot (2^6 \cdot n^7)^2$$

beides Quadrate von Zahlen, die für ganzes x_n und ganzes n offensichtlich rational (sogar ganzzahlig!) sind. Damit sind die Quadratwurzeln der betrachteten Ausdrücke ebenfalls rational; also sind alle Paare (x_n, y_n) zulässig.

Variante: Die Folgen $x_n := 4(n + n^{-4})$ und $y_n := 4(n^4 + n^{-1}) = n^3 \cdot x_n$ führen für alle n = 2, 3, 4, ... ebenfalls zu unendlich vielen verschiedenen zulässigen Paaren (x_n, y_n) .

2. Beweis: Wir weisen die Existenz unendlich vieler zulässiger Paare (x,y) mit x < y nach. Zu jedem Paar (x,y) verschiedener positiver rationaler Zahlen gibt es dann genau ein rationales k > 1 mit y = kx; umgekehrt führt auch jedes Paar positiver rationaler Zahlen (x,k) mit k > 1 über y := kx zu einem Paar verschiedener positiver rationaler Zahlen (x,y) mit y > x.

Es ist dann $x^2 + y^3 = x^2 + k^3x^3 = x^2(1 + k^3x) = (xu)^2$ und $x^3 + y^2 = x^3 + k^2x^2 = x^2(x + k^2) = (xv)^2$ mit geeigneten positiven reellen Zahlen u und v; dabei ist $1 + k^3x = u^2$ (A) und $x + k^2 = v^2$ (B). Offensichtlich sind bei vorgegebenem k und k die Zahlen k und k beide eindeutig bestimmt; ferner sind k und k genau dann rational, wenn das Paar k zulässig ist.

Für (u,v) ergibt sich aus (A) und (B) nach Multiplikation von (B) mit $k^3 \neq 0$ und Subtraktion die notwendige Bedingung 1 + $k^3x - k^3x - k^5 = u^2 - k^3v^2$ oder äquivalent $v^2 = \frac{u^2 - 1}{k^3} + k^2$ (C_k).

Umgekehrt führt – bei fest gewähltem k > 1 – jede rationale Lösung (u,v) der Gleichung (C_k) mit v > k über die Definition $x := v^2 - k^2$ zu einer Lösung x sowohl von (B) als auch von (A): Die Definition von x ist äquivalent zur Gleichung (B) und Einsetzen von x in (A) ergibt die zu (C_k) äquivalente Gleichung $1 + k^3(v^2 - k^2) = u^2$. Ferner führen – bei fest gewähltem k > 1 – verschiedene v–Werte zu verschiedenen x–Werten und damit zu verschiedenen Paaren (x,y). Es genügt also, für mindestens ein k > 1 unendlich viele rationale Lösungen (u,v) mit v > k für die Gleichung (C_k) nachzuweisen. Dies kann auf verschiedene Arten geschehen:

Variante 1: Wir führen den Nachweis für k = 2. Hierzu formen wir (C_k) äquivalent um zu $u^2 - k^3 v^2 = 1 - k^5$, also zu $u^2 - 8v^2 = -31$ (C_2) . Diese Gleichung hat die Form einer *allgemeinen Pell'schen Gleichung*, sodass wir das allgemeine Lösungsverfahren und den Beweis für dessen Richtigkeit hier mit speziellen Werten übernehmen können.

Die Paare $(u_n|v_n)$ (n=1,2,3,...) seien rekursiv definiert durch $u_0=1$, $v_0=2$ und $u_{n+1}=3u_n+8v_n$, $v_{n+1}=u_n+3v_n$ für n>1. Mit vollständiger Induktion ist schnell gezeigt, dass alle so bestimmten (u_i,v_i) Lösungen von (C_2) sind:

Wegen $1^2 - 8 \cdot 2^2 = -31$ ist $(u_0, v_0) = (1,2)$ eine Lösung von (C_2) ; und wenn (u_n, v_n) eine Lösung von (C_2) ist, d.h. wenn $(u_n^2 - 8v_n^2) = -31$ gilt, dann ist

$$-31 = (-31)\cdot 1 = (u_n^2 - 8\cdot v_n^2)\cdot (3^2 - 8) = 3^2 \cdot u_n^2 - 8\cdot u_n^2 - 8\cdot 3^2 \cdot v_n^2 + 8\cdot 8\cdot v_n^2$$

$$= 3^2 \cdot u_n^2 + 8^2 \cdot v_n^2 - 8\cdot (u_n^2 + 3^2 \cdot v_n^2) = 3^2 \cdot u_n^2 + 2\cdot 3\cdot 8\cdot u_n v_n + 8^2 \cdot v_n^2 - 8\cdot (u_n^2 + 2\cdot 3\cdot u_n v_n + 3^2 \cdot v_n^2)$$

$$= (3u_n + 8v_n)^2 - 8\cdot (u_n + 3v_n)^2 = u_{n+1}^2 - 8v_{n+1}^2,$$

also auch (u_{n+1}, v_{n+1}) eine Lösung von (C_2) .

Aus der Rekursionsformel ist sofort einsichtig, dass die Folgen der u_i und der v_i streng monoton steigend sind; wegen $v_1 = 7 > 2 = k$ ist für $n \ge 1$ damit auch die Bedingung $v_n > k$ erfüllt; da u_0 und v_0 beide rational sind und die Rekursion linear mit rationalen Koeffizienten ist, erhalten wir also unendlich viele verschiedene rationale Lösungen (u,v) mit v > k.

Bemerkung: Dieser Lösungsansatz liefert sogar unendlich viele verschiedene ganzzahlige Lösungen.

Quelle: z.B. http://www.mathworld.wolfram.com/PellEquation.html oder andere Seiten, die man im Internet (Suchbegriff "Pell Equation") findet. Dort lautet der hier verwendete Satz:

HS: Ist (u,v) eine ganzzahlige Lösung von $u^2 - Dv^2 = E$ (mit D, $E \in \mathbb{Z}$) und (r,s) eine ganzzahlige Lösung der "Einheitsgleichung" $u^2 - Dv^2 = 1$, so ist auch ((ur + Dvs), (us + vr)) eine ganzzahlige Lösung von $u^2 - Dv^2 = E$.

Bemerkungen: Wegen $x_i = v_i^2 - 4$ und $y_i = 2x_i$ ($i \ge 1$) sind auch die aus den (u_i, v_i) resultierenden zulässigen Paare (x_i, y_i) ganzzahlig. Man erhält (45, 90), (1596, 3192), (54285, 108570), (1844160, 3688320), ...

Verwendet man zusätzlich die aus der Definition folgenden Identitäten $x_n = v_n^2 - 4 = (u_n^2 - 1)/8$, also $u_n^2 = 8x_n + 1$ und $v_n^2 = x_n + 4$, so ist $x_{n+1} = v_{n+1}^2 - 4 = (u_n + 3v_n)^2 - 4 = u_n^2 + 6u_nv_n + 9v_n^2 - 4$ = $8x_n + 1 + 6\sqrt{(8x_n + 1)(x_n + 4)} + 9(x_n + 4) - 4 = 17x_n + 6\sqrt{(8x_n + 1)(x_n + 4)} + 33$.

Damit kann eine Rekursionsformel für ganzzahlige zulässige Paare (x,y) direkt angegeben werden:

Variante 2 (ohne direkten Beweis): Die rekursiv definierte Folge

$$x_0 = 0$$
, $x_{n+1} = 17x_n + 6\sqrt{(8x_n + 1)(x_n + 4)} + 33$ und $y_i = 2x_i$ für $n \ge 1$, ergibt für alle $n = 1, 2, ...$ zulässige Paare (x_n, y_n) .

Variante 3 (reiner Existenznachweis): Durch die Gleichung (C_k) ist die Relation $\{(u|v) \mid v^2 = \frac{u^2 - 1}{k^3} + k^2 \}$

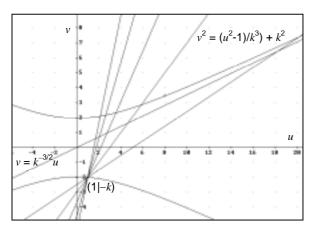
mit dem Graphen G_k gegeben; jede Lösung (u,v) von C_k entspricht dann einem Punkt (u|v) auf G_k ; es genügt also, unendlich viele rationale Punkte (u|v) mit v > k auf G_k nachzuweisen.

Mit Schulmitteln können wir aus der Gleichung (C_k) ablesen: G_k ist eine in Richtung v-Achse geöffnete

Hyperbel mit den Scheiteln $(0|\pm\sqrt{k^2-\frac{1}{k^3}})$ (die Wurzel ist wegen k>1 stets definiert!) und den

Asymptoten $v = \pm k^{-3/2}u$; ferner enthält G_k die Punkte ($\pm 1 \mid \pm k$) und der im 1. Quadranten liegende Ast ist überall links gekrümmt mit einer Steigung, die stets kleiner als $k^{-3/2}$ ist.

Nun betrachten wir alle Geraden durch (1|-k) mit rationaler Steigung $m > k^{-3/2}$, also alle Geraden, die steiler als die Asymptote im 1. Quadranten sind. Aus den Eigenschaften von G_k ist sofort erkennbar, dass jede dieser Geraden den Graphen G_k im 1. Quadranten in einem Punkt (u|v) mit u > 1 und v > k schneidet, und zwar für verschiedene m in verschiedenen Punkten. (Diese Aussage gilt übrigens für alle k > 1!)



Der u-Wert dieser Schnittpunkte berechnet sich – abhängig von m – aus der Gleichung $(-k+m(u-1))^2=\frac{u^2-1}{k^3}+k^2$. Wenn (k,m) rational

ist, ist dies eine quadratische Gleichung für u mit rationalen Koeffizienten, deren eine Lösung u=1, also rational ist. Bekanntlich ist die zweite Lösung dann ebenfalls rational; da ferner die Geradengleichung rationale Koeffizienten hat, ist dann auch der v-Wert des Schnittpunktes rational.

Damit haben wir sogar für jedes beliebige rationale k > 1 unendlich viele rationale Punkte (u|v) auf dem Graphen G_k mit u > 1 nachgewiesen.

Bemerkungen: Für jedes k > 1 und jedes $m > k^{-3/2}$ lassen sich die Koordinaten des Schnittpunktes der Geraden mit G_k konkret berechnen und hieraus ein zulässiges Paar [x,y] = [x(k,m),y(k,m)] bestimmen. Die hier entstehende Formel für x(k,m) wird im 3. Beweis verwendet.

Umgekehrt gibt es zu jedem zulässigen Paar (x,y) ein entsprechendes Paar (k,m). Berechnet man also für alle rationalen k > 1 und alle rationalen Steigungen $m > k^{-3/2}$ jeweils die Koordinaten der zweiten Schnittpunkte, so erhält man die Gesamtmenge aller zulässigen Paare (x,y) mit x < y.

Da die Aufgabenstellung symmetrisch in x und y ist, führt ein Vertauschen von x und y zur Gesamtmenge aller zulässigen Paare (x,y) ohne jede weitere Einschränkung.

Anstatt des Punkte (1|-k) hätten wir auch den Punkt (1|k) oder jeden anderen rationalen Punkt als gemeinsamen Punkt der Geradenschar wählen können. Der Grund für die Wahl des Punktes (1|-k) war, dass dann der Parameter m aus einem Intervall gewählt werden kann, das nur einseitig beschränkt ist.

3. Beweis: Die Definition
$$x := x(k,m) = \frac{4m(k+m)(k^4m+1)}{(k^3m^2-1)^2}$$
 und $y := kx$ führt für jedes rationale Paar

(k,m) mit k > 1 und $m > k^{-3/2}$ zu einem zulässigen Paar (x,y): Es ist nämlich mit (k,m) offensichtlich auch (x,y) rational; mit k > 1 > 0 und $m > k^{-3/2} > 0$ ist der Nenner verschieden von Null und es sind auch x > 0 und y > 0; ferner ist wegen k > 1 auch $x \ne y$. Schließlich bestätigt Nachrechnen, dass sowohl

$$x^{2} + y^{3} = x^{2} + k^{3}x^{3} = x^{2}(1 + k^{3}x) = \left(\frac{4m(k+m)(k^{4}m+1)}{(k^{3}m^{2}-1)^{2}}\right)^{2}\left(1 + k^{3}\frac{4m(k+m)(k^{4}m+1)}{(k^{3}m^{2}-1)^{2}}\right)$$

$$= \frac{4^{2}m^{2}(k+m)^{2}(k^{4}m+1)^{2}\left((k^{3}m^{2}-1)^{2} + k^{3}4m(k+m)(k^{4}m+1)\right)}{(k^{3}m^{2}-1)^{6}}$$

$$= \frac{4^{2}m^{2}(k+m)^{2}(k^{4}m+1)^{2}\left(k^{6}m^{4}-2k^{3}m^{2}+1+4k^{8}m^{2}+4k^{4}m+4k^{7}m^{3}+4k^{3}m^{2}\right)}{(k^{3}m^{2}-1)^{6}}$$

$$= \frac{4^{2}m^{2}(k+m)^{2}(k^{4}m+1)^{2}(2k^{4}m+k^{3}m^{2}+1)^{2}}{(k^{3}m^{2}-1)^{6}} \text{ als auch}$$

$$x^{3} + y^{2} = x^{2}(x+k^{2}) = \left(\frac{4m(k+m)(k^{4}m+1)}{(k^{3}m^{2}-1)^{2}}\right)^{2}\left(\frac{4m(k+m)(k^{4}m+1)}{(k^{3}m^{2}-1)^{2}} + k^{2}\right)$$

$$= \frac{4^{2}m^{2}(k+m)^{2}(k^{4}m+1)^{2}\left(4m(k+m)(k^{4}m+1) + k^{2}(k^{3}m^{2}-1)^{2}\right)}{(k^{3}m^{2}-1)^{6}}$$

$$= \frac{4^{2}m^{2}(k+m)^{2}(k^{4}m+1)^{2}\left(4k^{5}m^{2}+4km+4k^{4}m^{3}+4m^{2}+k^{8}m^{4}-2k^{5}m^{2}+k^{2}\right)}{(k^{3}m^{2}-1)^{6}}$$

$$= \frac{4^{2}m^{2}(k+m)^{2}(k^{4}m+1)^{2}(k^{4}m^{2}+k+2m)^{2}}{(k^{3}m^{2}-1)^{6}}$$

das Produkt von Quadraten von Zahlen ist, die für rationales k und m ebenfalls rational sind. Damit sind jeweils die Quadratwurzeln der betrachteten Ausdrücke auch rational; jedes Paar (x_n, y_n) ist also zulässig.

Als Letztes zeigen wir noch, dass die Definition zu unendlich vielen verschiedenen Paaren (x_n, y_n) führt: Hierzu setzen wir z.B. k = m = 2, 3, 4, ...; dann ist stets $m > k^{-3/2}$ und die Definition von x vereinfacht sich zu $x = x(k) = \frac{8k^2(k^5 + 1)}{(k^5 - 1)^2}$; dies ist eine Folge von positiven Zahlen mit Grenzwert 0 (im Nenner kommt k in höherer Potenz vor als im Zähler!), für genügend große k also streng monoton fallend.

Bemerkungen: Die Motivation für diese Formeln ergeben sich aus den Argumenten in der Variante 3 des 2. Beweises. Gleichzeitig wird klar, dass die Gesamtheit aller möglichen Werte (k,m) zur Gesamtheit aller zulässigen Paare (x,y) mit x < y führt.

Varianten des ersten Beweises können durch eine geschickte Definition einer Folge aus Werten von (k,m) hergeleitet werden: Die Wahl der (k,m) ist dann Grundlage für eine Definition einer Folge von Werten (x,y), deren Zulässigkeit durch einfache Rechnung gezeigt werden kann. So kann man wie oben m=k setzen, oder z.B. auch

$$m = k^{-1}$$
, was zu $x = x(k) = \frac{4(k^2 + 1)(k^3 + 1)}{k^2(k - 1)^2}$, $y = kx$ führt.